Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $ \lim\limits _{x\to 1 } \left(log \,ex\right)^{1/log\,x} $ is equal

MHT CETMHT CET 2009

Solution:

$ \displaystyle\lim _{x \rightarrow 1}(\log e x)^{1 / \log x}=\displaystyle\lim _{x \rightarrow 1}[\log e+\log x]^{1 / \log x} $
$= \displaystyle\lim _{x \rightarrow 1}[1+\log x]^{1 / \log x} $
$=e^{\displaystyle\lim _{x \rightarrow 1} \frac{\log x}{\log x}}=e$