Q.
Let $z_{k}=\cos \left(\frac{2 k \pi}{10}\right)+i \sin \left(\frac{2 k \pi}{10}\right) ; k=1,2, \ldots, 9$.
List I
List II
P
For each $z_{k}$ there exists a $z_{j}$ such $z_{k} \cdot z_{j}=1$
1
True
Q
There exists a $k \in\{1,2, \ldots ., 9\}$ such that $z_{1}, z=z_{k}$ has no solution $z$ in the set of complex numbers
2
False
R
$\frac{\left|1-z_{1}\right|\left|1-z_{2}\right| \ldots\left|1-z_{9}\right|}{10}$ equals
3
1
S
$1-\displaystyle\sum_{k=1}^{9} \cos \left(\frac{2 k \pi}{10}\right)$ equals
4
2
List I | List II | ||
---|---|---|---|
P | For each $z_{k}$ there exists a $z_{j}$ such $z_{k} \cdot z_{j}=1$ | 1 | True |
Q | There exists a $k \in\{1,2, \ldots ., 9\}$ such that $z_{1}, z=z_{k}$ has no solution $z$ in the set of complex numbers | 2 | False |
R | $\frac{\left|1-z_{1}\right|\left|1-z_{2}\right| \ldots\left|1-z_{9}\right|}{10}$ equals | 3 | 1 |
S | $1-\displaystyle\sum_{k=1}^{9} \cos \left(\frac{2 k \pi}{10}\right)$ equals | 4 | 2 |
JEE AdvancedJEE Advanced 2014
Solution: