Q.
Let $Z$ be the set of all integers,
$ A =\left\{( x , y ) \in Z \times Z :( x -2)^{2}+ y ^{2} \leq 4\right\} $
$ B =\left\{( x , y ) \in Z \times Z : x ^{2}+ y ^{2} \leq 4\right\}$ and
$ C =\left\{( x , y ) \in Z \times Z :( x -2)^{2}+( y -2)^{2} \leq 4\right\}$
If the total number of relation from $A \cap B$ to $A \cap C$ is $2^{ p }$, then the value of $p$ is :
Solution: