Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $z$ be a complex number such that $\left|\frac{z-2 i}{z+i}\right|=2, z \neq-i$. Then $z$ lies on the circle of radius $2$ and centre

JEE MainJEE Main 2023Complex Numbers and Quadratic Equations

Solution:

$ ( z -2 i )(\overline{ z }+2 i )=4( z + i )(\overline{ z }- i )$
$ z \overline{ z }+4+2 i ( z -\overline{ z })=4( z \overline{ z }+1+ i (\overline{ z }- z )) $
$ 3 z \overline{ z }-6 i ( z -\overline{ z })=0$
$ x ^2+ y ^2-2 i (2 iy )=0$
$ x ^2+ y ^2+4 y =0$