Q.
Let $Z$ and $W$ be complex numbers such that $|Z| = |W| $ and arg $Z$ denotes the principal argument of $Z$.
Statement 1: If arg $Z+$ arg $W= \pi$, then $Z=-\overline{W}.$
Statement 2: $\left|Z\right|=\left|W\right|,$ implies arg $Z-$arg $\overline{W}=\pi.$
AIEEEAIEEE 2012Complex Numbers and Quadratic Equations
Solution: