Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $z = 1 + ai$ be a complex number, $a > 0$, such that $z^3$ is a real number. Then the sum $1 + z + z^2 +..... + z^{11}$ is equal to :

JEE MainJEE Main 2016Complex Numbers and Quadratic Equations

Solution:

$z=1+a i, $
$a > 0$
$z^{3}=1-3 a^{2}+\left(3 a-a^{3}\right) i$ is a real number
$\Rightarrow 3 a-a^{3}=0 $
$\Rightarrow a^{2}=3 $
$\Rightarrow a=\sqrt{3}, $
$a > 0 $
$\Rightarrow z=1+\sqrt{3} i $
$ =2\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)$
Now $1+z+z^{2}+\ldots \ldots+z^{11}=\frac{1\left(1-z^{12}\right)}{1-z}=\frac{1-2^{12}(\cos 4 \pi+i \sin 4 \pi)}{1-(1+i \sqrt{3})} $
$=\frac{1-2^{12}}{-i \sqrt{3}}=\frac{4095}{i \sqrt{3}}=-1365 \,\sqrt{3} i$