Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let z = 1 + ai be a complex number, a > 0, such that z3 is a real number. Then the sum 1 + z + z2 +..... + z11 is equal to :
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. Let $z = 1 + ai$ be a complex number, $a > 0$, such that $z^3$ is a real number. Then the sum $1 + z + z^2 +..... + z^{11}$ is equal to :
JEE Main
JEE Main 2016
Complex Numbers and Quadratic Equations
A
$- 1250 \, \sqrt{3} i $
16%
B
$1250 \, \sqrt{3} i$
15%
C
$1365 \, \sqrt{3} i$
25%
D
$- 1365 \, \sqrt{3} i$
44%
Solution:
$z=1+a i, $
$a > 0$
$z^{3}=1-3 a^{2}+\left(3 a-a^{3}\right) i$ is a real number
$\Rightarrow 3 a-a^{3}=0 $
$\Rightarrow a^{2}=3 $
$\Rightarrow a=\sqrt{3}, $
$a > 0 $
$\Rightarrow z=1+\sqrt{3} i $
$ =2\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)$
Now $1+z+z^{2}+\ldots \ldots+z^{11}=\frac{1\left(1-z^{12}\right)}{1-z}=\frac{1-2^{12}(\cos 4 \pi+i \sin 4 \pi)}{1-(1+i \sqrt{3})} $
$=\frac{1-2^{12}}{-i \sqrt{3}}=\frac{4095}{i \sqrt{3}}=-1365 \,\sqrt{3} i$