Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $Z=\begin{bmatrix} 1 & 1 & 3 \\ 5 & 1 & 2 \\ 3 & 1 & 0 \end{bmatrix}$ and $P=\begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix}$ . If $Z=PQ^{- 1}$ , where $Q$ is a square matrix of order $3,$ then the value of $Tr\left(\left(a d j Q\right) P\right)$ is equal to (where $Tr\left(\right.A\left.\right)$ represents the trace of a matrix $A$ i.e. the sum of all the diagonal elements of the matrix $A$ and $adjB$ represents the adjoint matrix of matrix $B$ )

NTA AbhyasNTA Abhyas 2020Matrices

Solution:

Given, $Z=PQ^{- 1}$
$\left|P\right|=-5,\left|Z\right|=10$
$\left|Z\right|=\left|\frac{P}{Q}\right|\Rightarrow \left|Q\right|=\frac{- 5}{10}=-\frac{1}{2}$
$Z\left|Q\right|=P.adj\left(Q\right)$ $\Rightarrow P.adj\left(Q\right)=-\frac{1}{2}Z$
$Tr\left(\left(a d j Q\right) . P\right)=$ $Tr\left(P . a d j Q\right)$
$=\left(-\frac{1}{2} \operatorname{Tr}(Z)\right)$
$=-1$