Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let y=m x+c, m > 0 be the focal chord of y2=-64 x, which is tangent to (x+10)2+y2=4 Then, the value of 4 √2(m+c) is equal to.
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. Let $y=m x+c, m > 0$ be the focal chord of $y^{2}=-64 x$, which is tangent to $(x+10)^{2}+y^{2}=4$ Then, the value of $4 \sqrt{2}(m+c)$ is equal to_______.
JEE Main
JEE Main 2021
Conic Sections
A
B
C
D
Solution:
$y^{2}=-64 x$
focus : $(-16,0)$
$y=m x+c$ is focal chord
$\Rightarrow c=16 m \ldots \ldots . .(1)$
$y=m x+c$ is tangent to $(x+10)^{2}+y^{2}=4$
$\Rightarrow y=m(x+10) \pm 2 \sqrt{1+m^{2}}$
$\Rightarrow c=10 m \pm 2 \sqrt{1+m^{2}} $
$\Rightarrow 16 m=10 m \pm 2 \sqrt{1+m^{2}} $
$\Rightarrow 6 m=2 \sqrt{1+m^{2}} (m>0)$
$\Rightarrow 9 m^{2}=1+m^{2} $
$\Rightarrow m=\frac{1}{2 \sqrt{2}} \& c=\frac{8}{\sqrt{2}} $
$4 \sqrt{2}(m+c)=4 \sqrt{2}\left(\frac{17}{2 \sqrt{2}}\right)=34$