Q.
Let $y=f(x), x \in R$ satisfies the differential equation $x\left(y^{\prime \prime}+y^{\prime}\right)=-y^{\prime}-e^{-x}$ and $y(0)=-1$ where $y ^{\prime}=\frac{ dy }{ dx }$ and $y ^{\prime \prime}=\frac{ d ^2 y }{ dx ^2}$.
The value of $\int_0^1 e^x(f(x)+3) d x$ is equal to
Application of Integrals
Solution: