Q. Let $y=f(x)(f: R \rightarrow R)$ be an explicit function defined by the implicit equation $x^3+y^3+3\left(x^2+y^2\right)+3(x+y)=14$ and $g$ be the inverse of $f$. If $\frac{d}{d x}(f(x+g(x)) \cdot g(x+f(x)))$ at $x =-1+\sqrt[3]{15}$ is equal $\lambda(15)^{2 / 3}$, where $\lambda \in I$, then find the value of $|\lambda|$.
Continuity and Differentiability
Solution: