Q.
Let $y=f(x)$ be a function and let $P=(a, f(a))$ and $Q(a+h, f(a+h))$ be two points close to each other on the given graph of this function.
I. $\displaystyle\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\displaystyle\lim _{Q \rightarrow P} \frac{Q R}{P R}$
II. $f^{\prime}(a)=\tan \Psi$
Which of the following is/are true?
Limits and Derivatives
Solution: