Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $X$, $Y$, $Z$ be subsets of $U$, where $n(U) = 35$, $n(X) = 15$, $n(Y) = 22$, $n(Z) = 14$ and $n(X \cap Y) = 11$, $n(Y \cap Z) = 8$, $n(X \cap Z) = 5$, $n(X \cap Y \cap Z) = 3$ then $n(X \cup Y \cup Z)'$ equals

Sets

Solution:

We know that $n(X \cup Y \cup Z) = n(X) + n(Y) +$
$n(Z) - n (X \cap Y) - n(Y \cap Z) - n(X \cap Z) + n (X \cap Y \cap Z)$
$= (15 + 22 + 14)-(11 + 8 + 5 )+ 3 = 30$
$\therefore n (X \cup Y \cup Z)' = n (U ) - n (X \cup F \cup Z) = 35-30 = 5$