Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let x,y and z be positive real numbers. Suppose x,y and z are the lengths of the sides of a triangle opposite to its angles X,Y and Z, respectively. If
tanx2+tanz2=2yx+y+z
then which of the following statements is/are TRUE?

JEE AdvancedJEE Advanced 2020

Solution:


let x+y+z=2 s
\sqrt{\frac{(s-y)(s-z)}{s(s-x)}+\sqrt{\frac{(s-x)(s-y)}{s(s-z)}}}=\frac{y}{s}
\Rightarrow \sqrt{\frac{s-y}{s}\left(\frac{y}{\sqrt{(s-x)(s-z))}}\right)}=\frac{y}{s}
\Rightarrow \sqrt{\frac{s(s-y)}{(s-x)(s-z)}}=1
\Rightarrow \tan \frac{Y}{2}=1
\Rightarrow Y=\frac{\pi}{2}
image
Clearly Y=X+Z
and x^{2}+z^{2}=y^{2}
Also, \tan \frac{x}{2}=\sqrt{\frac{1-\cos x}{1+\cos x}}
=\sqrt{\frac{1-\frac{z}{y}}{1+\frac{z}{y}}}
=\sqrt{\frac{y-z}{y+z}}=\sqrt{\frac{y^{2}-z^{2}}{(y+z)^{2}}}
=\frac{x}{y+z}