Q. Let $[ x ]=$ the greatest integer less than or equal to $x$. If all the values of $x$ such that the product $\left[x-\frac{1}{2}\right]\left[x+\frac{1}{2}\right]$ is prime, belongs to the set $\left[x_1, x_2\right) \cup\left[x_3, x_4\right)$, find the value of $x_1^2+x_2^2+x_3^2+x_4^2$.
Relations and Functions - Part 2
Solution: