Q.
Let $ π \left(x\right) = π₯ + log_{e} x β π₯ log_{e} π₯, π₯ β \left(0,β\right).$
β’ Column 1 contains information about zeros of $π (π₯) , π'(π₯)$ and $f ''(π₯)$.
β’ Column 2 contains information about the limiting behavior of $π(π₯) , π ' (π₯)$ and $f ''(π₯)$ at infinity.
β’ Column 3 contains information about increasing/decreasing nature of $π(π₯)$ and $f' (π₯)$ .
Column 1 Column 2 Column 3 (I) $π (π₯) = 0$ for some $x\in\left(1,e^{2}\right)$ (i) $\lim_{x\to\infty}f \left(x\right)=0$ (P) $π$ is increasing in ($0, 1$) (II) $π(π₯) = 0$ for some $x\in\left(1, e\right)$ (ii) $\lim_{x\to\infty}f \left(x\right)=-\infty$ (Q) $f$ is decreasing in ($π, π^2$) (III) $π(π₯) = 0$ for some $x\in\left(0, 1\right)$ (ii) $\lim_{x\to\infty}f' \left(x\right)=-\infty$ (R) $f'$ is increasing in ($0, 1$) (IV) $f ''(π₯) = 0$ for some $x\in\left(1, e\right)$ (ii) $\lim_{x\to\infty}f'' \left(x\right)=0$ (S) $f'$ is decreasing in ($π, π^2$)
Which of the following options is the only INCORRECT combination?
Column 1 | Column 2 | Column 3 |
---|---|---|
(I) $π (π₯) = 0$ for some $x\in\left(1,e^{2}\right)$ | (i) $\lim_{x\to\infty}f \left(x\right)=0$ | (P) $π$ is increasing in ($0, 1$) |
(II) $π(π₯) = 0$ for some $x\in\left(1, e\right)$ | (ii) $\lim_{x\to\infty}f \left(x\right)=-\infty$ | (Q) $f$ is decreasing in ($π, π^2$) |
(III) $π(π₯) = 0$ for some $x\in\left(0, 1\right)$ | (ii) $\lim_{x\to\infty}f' \left(x\right)=-\infty$ | (R) $f'$ is increasing in ($0, 1$) |
(IV) $f ''(π₯) = 0$ for some $x\in\left(1, e\right)$ | (ii) $\lim_{x\to\infty}f'' \left(x\right)=0$ | (S) $f'$ is decreasing in ($π, π^2$) |
Solution: