Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $ 𝑓 \left(x\right) = π‘₯ + log_{e} x βˆ’ π‘₯ log_{e} π‘₯, π‘₯ ∈ \left(0,∞\right).$
β€’ Column 1 contains information about zeros of $𝑓 (π‘₯) , 𝑓'(π‘₯)$ and $f ''(π‘₯)$.
β€’ Column 2 contains information about the limiting behavior of $𝑓(π‘₯) , 𝑓 ' (π‘₯)$ and $f ''(π‘₯)$ at infinity.
β€’ Column 3 contains information about increasing/decreasing nature of $𝑓(π‘₯)$ and $f' (π‘₯)$ .
Column 1 Column 2 Column 3
(I) $𝑓 (π‘₯) = 0$ for some $x\in\left(1,e^{2}\right)$ (i) $\lim_{x\to\infty}f \left(x\right)=0$ (P) $𝑓$ is increasing in ($0, 1$)
(II) $𝑓(π‘₯) = 0$ for some $x\in\left(1, e\right)$ (ii) $\lim_{x\to\infty}f \left(x\right)=-\infty$ (Q) $f$ is decreasing in ($𝑒, 𝑒^2$)
(III) $𝑓(π‘₯) = 0$ for some $x\in\left(0, 1\right)$ (ii) $\lim_{x\to\infty}f' \left(x\right)=-\infty$ (R) $f'$ is increasing in ($0, 1$)
(IV) $f ''(π‘₯) = 0$ for some $x\in\left(1, e\right)$ (ii) $\lim_{x\to\infty}f'' \left(x\right)=0$ (S) $f'$ is decreasing in ($𝑒, 𝑒^2$)

Which of the following options is the only INCORRECT combination?

JEE AdvancedJEE Advanced 2017Application of Derivatives

Solution:

image
1) $f ( x )= x +\log _{e}( x )- x \log _{e}( x )$
2) $f ^{\prime}( x )=\frac{1}{ x }-\log _{ e }( x )$
3) $f^{\prime \prime}(x)=-\frac{(x+1)}{x^{2}}<0 \forall x>0$
4) $f (1)= f ( e )=1, f \left( e ^{2}\right)<0$
5) $f ^{\prime}(1)=1, f ^{\prime}( e )=\frac{1}{ e }-1<0$