Q.
Let ' $X$ ' denotes the value of the product
$\left(1+a+a^2+a^3+\ldots \ldots \infty\right)\left(1+b+b^2+b^3+\ldots \ldots \infty\right)$
where ${ }^{\prime} a$ ' and ' $b$ ' are the roots of the quadratic equation $11 x ^2-4 x -2=0$ and ' $Y$ ' denotes the numerical value of the infinite series
$\left(\log _c 2\right)^0\left(\log _c 5^{4^0}\right)+\left(\log _c 2\right)^1\left(\log _c 5^{4^1}\right)+\left(\log _c 2\right)^2\left(\log _c 5^{4^2}\right)+\left(\log _c 2\right)^3\left(\log _c 5^{4^3}\right)+\ldots \ldots \infty$
where $c=2000$. If the value of $(X Y)$ can be expressed as rational $\frac{p}{q}$ (where $\left.p, q \in N\right)$, find $(p+q)$.
Sequences and Series
Solution: