Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $[x]$ denote the greatest integer not more than $x$. If $A$ and $B$ are the domains of the functions $f(x)=\frac{x-[x]}{\sqrt{|x|-x}}$ and $g(x)=\frac{x-[x]}{\sqrt{|x|+x}}$ respectively, then

TS EAMCET 2020

Solution:

Given function, $f(x)=\frac{x-[x]}{\sqrt{|x|-x}}$ will define, if $|x|>x \Rightarrow x<0 \Rightarrow x \in(-\infty, 0) \ldots$ (i)
and the function, $g(x)=\frac{x-[x]}{\sqrt{|x|+x}}$ will define, if
$|x|+x>0 \Rightarrow x>0 \Rightarrow x \in(0, \infty) \ldots$ (ii)
$\therefore A=\{x \mid x \in R$ and $x<0\}$
and $B=\{x \mid x \in R$ and $x>0\}$
$\therefore A \cap B=\phi$