Q. Let $\overrightarrow{ x }$ be a vector in the plane containing vectors $\overrightarrow{ a }=2 \hat{ i }-\hat{ j }+\hat{ k }$ and $\overrightarrow{ b }=\hat{ i }+2 \hat{ j }-\hat{ k }$. If the vector $\overrightarrow{ x }$ is perpendicular to $(3 \hat{ i }+2 \hat{ j }-\hat{ k })$ and its projection on $\vec{a}$ is $\frac{17 \sqrt{6}}{2}$, then the value of $|\overrightarrow{ x }|^{2}$ is equal to ________.
Solution: