Thank you for reporting, we will resolve it shortly
Q.
Let $X$ be a non-empty set and $P(X)$ be the set of all subsets of $X$. For $A, B \in P(X), A R B$ if and only if $A \cap B=\phi$ then the relation
Relations and Functions - Part 2
Solution:
$A \cap A=A \neq \phi$ if $A \neq \phi$, So $R$ is not reflexive.
$A \cap B=\phi \Rightarrow B \cap A=\phi$
$A R B \Rightarrow B R A \Rightarrow R$ is symmetric
Note $R$ is not transitive and not an equivalence relation.