Q. Let $\{x\}$ and $[x]$ denote the fractional part of $x$ and the greatest integer $\leq x$ respectively of a real number $x .$ If $\int_{0}^{n}\{x\} d x, \int_{0}^{n}[x] d x$ and $10\left(n^{2}-n\right)$ $( n \in N , n >1)$ are three consecutive terms of a $G.P$., then $n$ is equal to_____
Solution: