Q.
Let $x =5^{\left(\log _5 2+\log _5 3\right)}$.
If ' $d$ ' denotes the number of digits before decimal in $x ^{30}$ and ' $c$ ' denotes the number of naughts after decimal before a significant digit starts in $x^{-20}$, then find the value of $(d-c)$.
[Given : $\log _{10} 2=0.3010$ and $\log _{10} 3=0.4771$.]
Continuity and Differentiability
Solution: