Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $x_{1}, x_{2}, x_{3}, x_{4}$ and $x_{5}$ be the observations with mean $m$ and standard deviation $s$. The standard deviation of the observations $k x_{1}, k x_{2}, k x_{3}, k x_{4}$ and $k x_{5}$ is

Statistics

Solution:

Here, $m=\frac{\Sigma x_{i}}{5}, s=\sqrt{\frac{\Sigma x_{i}^{2}}{5}-\left(\frac{\Sigma x_{i}}{5}\right)^{2}}$
For observations $k x_{1}, k x_{2}, k x_{3}, k x_{4}, k x_{5}$
$SD =\sqrt{\frac{k^{2} \Sigma x_{i}^{2}}{5}-\left(\frac{k \Sigma x_{i}}{5}\right)^{2}}$
$=\sqrt{\frac{k^{2} \Sigma x_{i}^{2}}{5}-k^{2}\left(\frac{\Sigma x_{i}}{5}\right)^{2}}$
$=k \sqrt{\left(\frac{\Sigma x_{i}^{2}}{5}\right)-\left(\frac{\Sigma x_{i}}{5}\right)^{2}}=ks$