Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let x =[1 1 1] and A =[-1 2 3 0 1 6 0 0 -1]. For k ∈ N if X prime Ak X=33, then k is equal to:
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. Let $x =\begin{bmatrix}1 \\ 1 \\ 1\end{bmatrix}$ and $A =\begin{bmatrix}-1 & 2 & 3 \\ 0 & 1 & 6 \\ 0 & 0 & -1\end{bmatrix}$. For $k \in N$ if $X^{\prime} A^k X=33$, then $k$ is equal to:
JEE Main
JEE Main 2022
Matrices
A
B
C
D
Solution:
Allen (Dropped or 10)
$ X =\begin{bmatrix}1 \\ 1 \\ 1\end{bmatrix} ; A =\begin{bmatrix}-1 & 2 & 3 \\ 0 & 1 & 6 \\ 0 & 0 & -1\end{bmatrix}$
$ X ^{ T } A ^{ K } X =33$
$ \begin{bmatrix}1 & 1 & 1\end{bmatrix}\begin{bmatrix}-1 & 2 & 3 \\ 0 & 1 & 6 \\ 0 & 0 & -1\end{bmatrix}^{ k }\begin{bmatrix}1 \\ 1 \\ 1\end{bmatrix}=33 $
$\begin{bmatrix}1 & 1 & 1\end{bmatrix}\begin{bmatrix}-1 & 2 & 3 \\ 0 & 1 & 6 \\ 0 & 0 & -1\end{bmatrix}\begin{bmatrix}1 \\ 1 \\ 1\end{bmatrix}=33 $
$ \text { As } A^2=\begin{bmatrix}-1 & 2 & 3 \\ 0 & 1 & 6 \\ 0 & 0 & -1\end{bmatrix}\begin{bmatrix}-1 & 2 & 3 \\ 0 & 1 & 6 \\ 0 & 0 & -1\end{bmatrix}=\begin{bmatrix}1 & 0 & 6 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} $
$ A^4=\begin{bmatrix}1 & 0 & 6 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}1 & 0 & 6 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}=\begin{bmatrix}1 & 0 & 12 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}$
$ A^8=\begin{bmatrix}1 & 0 & 24 \\0 & 1 & 0 \\0 & 0 & 1\end{bmatrix}$
$ A^{10}=\begin{bmatrix}1 & 0 & 6 \\0 & 1 & 0 \\0 & 0 & 1\end{bmatrix}\begin{bmatrix}1 & 0 & 24 \\0 & 1 & 0 \\0 & 0 & 1\end{bmatrix}=\begin{bmatrix}1 & 0 & 30 \\0 & 1 & 0 \\0 & 0 & 1\end{bmatrix}$
$ \text { for } K \rightarrow \text { Even } A^{ K }=\begin{bmatrix}1 & 0 & 3 K \\0 & 1 & 0 \\0 & 0 & 1\end{bmatrix}$
$X ^{ T } A ^{ K } X =33$ (This is not correct)
$ \begin{bmatrix}1 & 1 & 1\end{bmatrix}\begin{bmatrix}1 & 0 & 3 K \\0 & 1 & 0 \\0 & 0 & 1\end{bmatrix}\begin{bmatrix}1 \\1 \\1\end{bmatrix} $
$ =\begin{bmatrix}1 & 1 & 3 K +1\end{bmatrix}\begin{bmatrix}1 \\1 \\1\end{bmatrix}=[3 K +3] $
$ \therefore 3 K +3=33 \therefore K =10 $
But it should be dropped as 33 is not matrix
If $K$ is odd
$X ^{ T } A ^{ K } X =33$
$ X ^{ T } AA { }^{ K -1} X =33$
$\begin{bmatrix}1 & 1 & 1\end{bmatrix}\begin{bmatrix}
-1 & 2 & 3 \\0 & 1 & 6 \\0 & 0 & -1\end{bmatrix}\begin{bmatrix}1 & 0& 3 k -3 \\0 & 1 & 0 \\0 & 0 & 1\end{bmatrix}\begin{bmatrix}1 \\1 \\1\end{bmatrix}=33 $
$\begin{bmatrix}-1 & 3 & 8\end{bmatrix}\begin{bmatrix}3 k -2 \\ 1 \\ 1\end{bmatrix}=[33]$
$ {[-3 k +13]=[33]}$
$ k =20 / 3$ (not possible)