Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $\vec{x}, \vec{y}$ and $\vec{z}$ be three vectors each of magnitude $\sqrt{2}$ and the angle between each pair of them is $\frac{\pi}{3}$. If $\vec{a}$ is a non-zero vector perpendicular to $\vec{x}$ and $\vec{y} \times z$ and $\vec{b}$ is a non-zero vector perpendicular to $\vec{y}$ and $\vec{z} \times \vec{x}$, then

JEE AdvancedJEE Advanced 2014

Solution:

$\vec{a}$ is in direction of $\vec{x} \times(\vec{y} \times \vec{z})$
i.e. $(\bar{x} \cdot \bar{z}) \vec{y}-(\bar{x} \cdot \vec{y}) \bar{z}$
$\Rightarrow \vec{a}=\lambda_{1}\left[2 \times \frac{1}{2}(\bar{y}-\bar{z})\right] $
$\vec{a}=\lambda_{1}(\vec{y}-\vec{z}) \ldots$ (1)
Now $\vec{ a } \cdot \vec{ y }=\lambda_{1}(\vec{ y } \cdot \vec{ y }-\vec{ y } \cdot \vec{ z })$
$=\lambda_{1}(2-1) \Rightarrow \lambda_{1}=\vec{ a } \cdot \vec{ y } \ldots$(2)
From (1) and $(2), \vec{ a }=\vec{ a } \cdot \vec{ y }(\vec{ y }-\vec{ z })$
Similarly, $\vec{ b }=(\vec{ b } \cdot \vec{ z })(\vec{ z }-\vec{ x })$
Now, $\vec{ a } \cdot \vec{ b }=(\vec{ a } \cdot \vec{ y })(\vec{ b } \cdot \vec{ z })[(\vec{ y }-\vec{ z }) \cdot(\vec{ z }-\vec{ x })]$
$=(\vec{a} \cdot \vec{y})(\vec{b} \cdot \bar{z})[1-1-2+1] $
$=-(\vec{a} \cdot \vec{y})(\vec{b} \cdot \vec{z})$