Q. Let $\vec{v}=\alpha \hat{i}+2 \hat{j}-3 \hat{k}, \vec{w}=2 \alpha \hat{i}+\hat{j}-\hat{k}$ and $\vec{u}$ be a vector such that $|\vec{u}|=\alpha>0$. If the minimum value of the scalar triple product $[\vec{u}\,\, \vec{v}\,\, \vec{w}]$ is $-\alpha \sqrt{3401}$, and $|\vec{u} \cdot \hat{i}|^2=\frac{m}{n}$ where $m$ and $n$ are coprime natural numbers, then $m+n$ is equal to _____
Solution: