Q.
Let $\vec{r}$ be a position vector of a variable point in Cartesian $OXY$ plane such that $\vec{ r } \cdot(10 \hat{ j }-8 \hat{ i }-\hat{ r })=40$ and $p_{1}=\max \left\{|\vec{r}+2 \hat{i}-3 \hat{j}|^{2}\right\}, p_{2}=\min \left\{|\vec{r}+2 \hat{i}-3 \hat{j}|^{2}\right\}$ A tangent line is drawn to the curvy $y=8 / x^{2}$ at point $A$ with abscissa $2$ . The drawn line cuts the $x$-axis at a point $B$.
$p _{2}$ is equal to
Vector Algebra
Solution: