Q. Let $ \vec{a}$, $\vec{b}$ and $\vec{c}$ be three non-zero vectors such that no two of these are collinear. If the vectors $ \vec{a} + 2\vec{b}$ is collinear with $\vec{c}$ and $\vec{b} + 3\vec{c}$ is collinear with $ \vec{a}$, then $ \vec{a}+2\vec{b}+6\vec{c}$ equals to
Vector Algebra
Solution: