Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $\vec{ a }=\hat{ i }+\hat{ j }+\hat{ k }$ and $\vec{ b }=\hat{ j }-\hat{ k }$. If $\vec{ c }$ is a vector such that $\vec{ a } \times \vec{ c }=\vec{ b }$ and $\vec{ a }. \vec{ c }=3$, then $\vec{ a } .(\vec{ b } \times \vec{ c })$ is equal to :

JEE MainJEE Main 2021Vector Algebra

Solution:

$|\vec{ a }|=\sqrt{3} ; \vec{ a } .\vec{ c }=3 $;
$ \vec{ a } \times \vec{ b }=-2 \hat{ i }+\hat{ j }+\hat{ k }, \vec{ a } \times \vec{ c }=\vec{ b }$
Cross with $\vec{a}$.
$\vec{ a } \times(\vec{ a } \times \vec{ c })=\vec{ a } \times \vec{ b }$
$\Rightarrow (\vec{ a } \cdot \vec{ c }) \vec{ a }- a ^{2} \vec{ c }=\vec{ a } \times \vec{ b } $
$\Rightarrow 3 \vec{ a }-3 \vec{ c }=-2 \hat{ i }+\hat{ j }+\hat{ k } $
$\Rightarrow 3 \hat{ i }+3 \hat{ j }+3 \hat{ k }-3 \vec{ c }=-2 \hat{ i }+\hat{ j }+\hat{ k } $
$\Rightarrow \vec{ c }=\frac{5 \hat{ i }}{3}+\frac{2 \hat{ j }}{3}+\frac{2 \hat{ k }}{3}$
$\therefore \vec{ a }.(\vec{ b } \times \vec{ c })=(\vec{ a } \times \vec{ b }) . \vec{ c }$
$=\frac{-10}{3}+\frac{2}{3}+\frac{2}{3}=-2$