Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\alpha, \beta$ are natural numbers such that $100^\alpha-199 \beta=(100)(100)+(99)(101)+(98)(102)$ $+\ldots .+(1)(199)$, then the slope of the line passing through $(\alpha, \beta)$ and origin is :

JEE MainJEE Main 2021Straight Lines

Solution:

$S=(100)(100)+(99)(101)+(98)(102) \ldots \ldots \ldots(2)(198)+(1)(199) $
$S=\displaystyle\sum_{x=0}^{99}(100-x)(100+x)=\sum 100^2-x^2$
$=100^3-\frac{99 \times 100 \times 199}{6} $
$\alpha=3 $
$\beta=1650$
$\text { slope }=\frac{1650}{3}=550$