Q. Let $\vec{a} = 2\hat{i}+\hat{k}$ and $\vec{b} = \hat{i}+2\hat{j}+\hat{k}$ be two vectors. Consider a vector $\vec{c} = \vec{\alpha}a + \beta\vec{b}, \alpha, \beta \in ℝ$ If the projection of $\vec{c}$ on the vector $\left(\vec{a}+\vec{b}\right)$ is $3\sqrt{2}$, then the minimum value of $\left(\vec{c}-\left(\vec{a}\times\vec{b}\right)\right)\cdot\vec{c}$ equals
JEE AdvancedJEE Advanced 2019
Solution: