Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $\overrightarrow{v}$, v$_{rms}$ and v$_p$ respectively denote the mean speed, root mean square speed and most probable speed of the molecules in an ideal monoatomic gas at absolute temperature T. The mass of a molecule is m. Then

IIT JEEIIT JEE 1998Thermodynamics

Solution:

$v_{rms}=\sqrt{\frac{3RT}{M}}, \overrightarrow{v}=\sqrt{\frac{8}{\pi}.\frac{RT}{M}}=\sqrt{\frac{2.5RT}{M}}$
and $ \, \, \, \, \, \, \, \, \, \, \, \, \, \, v_p=\sqrt{\frac{2RT}{M}}$
From these expressions we can see that
$ \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, v_p < \overrightarrow{V} < v_{rms}$
Secondly $ \, \, \, \, \, \, \, \, \, \, \, v_{rms}=\sqrt{\frac{3}{2}}v_p$
and average kinetic energy of a gas molecule
$\, \, \, \, \, \, \, \, \, =\frac{1}{2}mv^2_{rms}=\frac{1}{2}m\bigg(\sqrt{\frac{3}{2}v_p}\bigg)^2=\frac{3}{4}mv^2_p$