Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let the volume of a parallelepiped whose coterminous edges are given by $\overset{ \rightarrow }{u}=\hat{i}+\hat{j}+\lambda \hat{k},\overset{ \rightarrow }{ \, v}=\hat{i}+\hat{j}+3\hat{k}$ and $\overset{ \rightarrow }{w}=2\hat{i}+\hat{j}+\hat{k}$ be $1$ cu. unit. If $\theta $ be the angle between the edges $\overset{ \rightarrow }{u}$ and $\overset{ \rightarrow }{w},$ then the value of $cos \theta $ can be

NTA AbhyasNTA Abhyas 2020Vector Algebra

Solution:

$\pm1=\begin{vmatrix} 1 & 1 & \lambda \\ 1 & 1 & 3 \\ 2 & 1 & 1 \end{vmatrix}\Rightarrow =-\lambda +3=\pm1\Rightarrow \lambda =2or\lambda =4$
For $\lambda =4$
$cos\theta =\frac{2 + 1 + 4}{\sqrt{6} \sqrt{18}}=\frac{7}{6 \sqrt{3}}$