Q. Let the vectors $\vec{a}=(1+t) \hat{i}+(1-t) \hat{j}+\hat{k}$, $\overrightarrow{ b }=(1-t) \hat{i}+(1+t) \hat{j}+2 \hat{k}$ and $\vec{c}=t \hat{i}-t \hat{j}+\hat{k}$, $t \in R$ be such that for $\alpha, \beta, \gamma \in R$, $\alpha \vec{a}+\beta \vec{b}+\gamma \vec{c}=\overrightarrow{0} \Rightarrow \alpha=\beta=\gamma=0$. Then, the set of all values of $t$ is :
Solution: