Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let the vectors $\overrightarrow{P Q}, \overrightarrow{Q R}, \overrightarrow{R S}, \overrightarrow{S T}, \overrightarrow{T U}$ and $\overrightarrow{U P}$, represent the sides of a regular hexagon.
STATEMENT-1: $\overrightarrow{P Q} \times(\overrightarrow{R S}+\overrightarrow{S T}) \neq \overrightarrow{0}$.
because
STATEMENT-2:$\overrightarrow{P Q} \times \overrightarrow{R S}=\overrightarrow{0}$ and $\overrightarrow{P Q} \times \overrightarrow{S T} \neq \overrightarrow{0}$

JEE AdvancedJEE Advanced 2007

Solution:

Statement-1: $\overrightarrow{P Q} \times(\overrightarrow{R S} \times \overrightarrow{S T}) \neq 0 .$
Since $\overrightarrow{P Q}$ is not parallel to $\overrightarrow{R T}$, we get
$\overrightarrow{P Q} \times(\overrightarrow{R T})$
That is, Statement-2 is true.
image
$\overrightarrow{P Q} \times(\overrightarrow{R T}) \neq 0$
Statement-2: $\overrightarrow{P Q} \times \overrightarrow{R S}=\overrightarrow{0}$ and $\overrightarrow{P Q} \times \overrightarrow{S T} \neq \overrightarrow{0}$
Since $\overrightarrow{P Q}$ is not parallel to $\overrightarrow{R S}$, Statement-2 is false.