Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let the tangent to the circle $C _{1}: x^{2}+y^{2}=2$ at the point $M(-1,1)$ intersect the circle $C_{2}$ : $( x -3)^{2}+(y-2)^{2}=5$, at two distinct points $A$ and $B$. If the tangents to $C _{2}$ at the points $A$ and $B$ intersect at $N$, then the area of the triangle $ANB$ is equal to :

JEE MainJEE Main 2022Conic Sections

Solution:

$OP =\left|\frac{2-3+2}{\sqrt{2}}\right|$
image
$OP =\frac{3}{\sqrt{2}} $
$ AP =\sqrt{ OA ^{2}- OP ^{2}}$
$=\frac{1}{\sqrt{2}} $
$\tan \theta=3 $
$\therefore \sin \theta=\frac{3}{\sqrt{10}}=\frac{ AP }{ AN } $
$\Rightarrow AN =\frac{\sqrt{5}}{3}= BN$
Area of $\triangle ANB =\frac{1}{2} \cdot\left( AN ^{2}\right) \sin 2 \theta=\frac{1}{6}$