Q.
Let the system of linear equations
$x+y+\alpha z=2$
$3 x+y+z=4 $
$x+2 z=1$
have a unique solution $\left(x^{*}, y^{*}, z^{*}\right)$. If $\left(\alpha, x^{*}\right),\left(y^{*}, \alpha\right)$ and $\left(x^{*},-y^{*}\right)$ are collinear points, then the sum of absolute values of all possible values of $\alpha$ is :
Solution: