Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let the ratio of the fifth term from the beginning to the fifth term from the end in the binomial expansion of $\left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right)^n$, in the increasing powers of $\frac{1}{\sqrt[4]{3}}$ be $\sqrt[4]{6}: 1$. If the sixth term from the beginning is $\frac{\alpha}{\sqrt[4]{3}}$, then $\alpha$ is equal to

JEE MainJEE Main 2022Binomial Theorem

Solution:

$ \frac{T_5}{T_{n-3}}=\frac{{ }^n C_4\left(2^{1 / 4}\right)^{n-4}\left(3^{-1 / 4}\right)^4}{{ }_{n-4}\left(2^{1 / 4}\right)^4\left(3^{-1 / 4}\right)^{n-4}}=\frac{\sqrt[4]{6}}{1}$
$ \Rightarrow 2^{\frac{n-8}{4}} 3^{\frac{n-8}{4}}=6^{1 / 4}$
$ \Rightarrow 6^{n-8}=6 $
$ \Rightarrow n-8=1 \Rightarrow n=9 $
$ T_6={ }^9 C_5\left(2^{1 / 4}\right)^4\left(3^{-1 / 4}\right)^5=\frac{84}{\sqrt[4]{3}} $
$ \therefore \alpha=84$