Q. Let the position vectors of points $'A'$ and $'B' $ be $\hat{ i }+\hat{ j }+\hat{ k }$ and $2 \hat{ i }+\hat{ j }+3 \hat{ k },$ respectively. $A$ point $ 'P'$ divides the line segment $AB $ internally in the ratio $\lambda: 1(\lambda>0)$. If $O$ is the origin and $\vec{ OB } \cdot \vec{ OP }-3|\vec{ OA } \times \vec{ OP }|^{2}=6,$ then $\lambda$ is equal to ___
Solution: