Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let the population of rabbits surviving at a time $t$ be governed by the differential equation
$\frac {dp(t)}{dt}=\frac {1}{2} p(t)-200.$ If $p(0)=100,$ then $p(t)$ is equal to

JEE MainJEE Main 2014Differential Equations

Solution:

$\frac{d p(t)}{d t}=\frac{1}{2} p(t)-200$
$\int \frac{d(p(t))}{\left(\frac{1}{2} p(t)-200\right)}=\int dt$
$2 \,\log \left(\frac{p(t)}{2}-200\right)=t+c$
$\frac{p(t)}{2}-200=e^{\frac{t}{2}} k$
Using given condition $p(t)=400-300 \,e^{t / 2}$