Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let the mean and variance of the frequency distribution
$x :$ $x_{1}=2$ $x_{2}=6$ $x_{3}=8$ $x_{4}=9$
$f :$ $4$ $4$ $\alpha$ $\beta$

be $6$ and $6.8$ respectively. If $x_{3}$ is changed from $8$ to $7$ , then the mean for the new data will be:

JEE MainJEE Main 2021Statistics

Solution:

Given $32+8 \alpha+9 \beta=(8+\alpha+\beta) \times 6$
$\Rightarrow 2 \alpha+3 \beta=16 \ldots \ldots$ (i)
Also, $4 \times 16+4 \times \alpha+9 \beta=(8+\alpha+\beta) \times 6.8$
$\Rightarrow 640+40 \alpha+90 \beta=544+68 \alpha+68 \beta$
$\Rightarrow 28 \alpha-22 \beta=96$
$\Rightarrow 14 \alpha-11 \beta=48$
from (i) & (ii) $\alpha=5\, \& \,\beta=2$
so, new mean $=\frac{32+35+18}{15}$
$=\frac{85}{15}=\frac{17}{3}$