Q.
Let the matrix Let the matrix
$
M=\left[\begin{array}{ccc}
\tan \left(\frac{301 \pi}{3}\right) & \sec (2016 \pi) & \cot \left(\frac{2015 \pi}{2}\right) \\
\cot \left(\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{3}\right) & 2 \sin \left(\frac{4 \pi}{3}\right) & \sec ^{-1}(2016)-\cos ^{-1}\left(\frac{1}{2016}\right) \\
\cos \left(\frac{2009 \pi}{2}\right) & \cos ^{-1}(1) & \sec \left(\frac{301 \pi}{3}\right)
\end{array}\right] \text {, }
$
then the value of $\operatorname{det}\left(2 M^{T}+\operatorname{adj}(M)\right)$ is:
NTA AbhyasNTA Abhyas 2022
Solution: