Q.
Let the lines
$L _{1}: \overrightarrow{ r }=\lambda(\hat{ i }+2 \hat{ j }+3 \hat{ k }), \lambda \in R$
$L_{2}: \vec{r}=(\hat{i}+3 \hat{j}+\hat{k})+\mu(\hat{i}+\hat{j}+5 \hat{k}) ; \mu \in R$
intersect at the point $S$. If a plane $a x+b y-z$ $+d=0$ passes through $S$ and is parallel to both the lines $L_{1}$ and $L_{2}$, then the value of $a+b+$ $d$ is equal to _________
Solution: