Q. Let the line $\frac{x-3}{7}=\frac{y-2}{-1}=\frac{z-3}{-4}$ intersect the plane containing the lines $\frac{x-4}{1}=\frac{y+1}{-2}=\frac{z}{1}$ and $4 a x-y+5 z-7 a=0$ $=2 x -5 y - z -3, \quad a \in R$ at the point $P(\alpha, \beta, \gamma)$. Then the value of $\alpha+\beta+\gamma$ equals ______
Solution: