Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let the line (x-2/3)=(y-1/-5)=(z+2/2) lie in the x+ 3y-α z+ β=0. Then (α,β) equals
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. Let the line $\frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+2}{2}$ lie in the $x+ 3y-\alpha z+ \beta=0$. Then $(\alpha,\beta)$ equals
AIEEE
AIEEE 2009
Three Dimensional Geometry
A
$(- 6, 7)$
22%
B
$(5, - 15)$
33%
C
$(- 5, 5)$
44%
D
$(6, - 17)$
0%
Solution:
Since the line $\frac{x-2}{3}=\frac{y-1}{-5} =\frac{z+2}{2}$ line in the plane $x+3y+\alpha z+\beta=0$ $\therefore $ P (2, 1, -2) lies on this plane.
$\therefore $ $2 + 3(1) - \alpha (-2) + \beta$ = 0
$\Rightarrow $ $2 \alpha + \beta + 5 $ = 0 ....(1)
Also normal to the plane is $\bot$ to the given line.
$\therefore $ $3 \times 1 + 3 (-5) - \alpha (2) = 0 \, \Rightarrow \, -2 \alpha = 15 - 3 = 12 \, \Rightarrow \, \alpha = -6$
$\therefore $ ( 1 ) gives $- 12 + \beta + 5 $ = 0 $\therefore $ $\beta = 12 - 5 = 7$
$\therefore $ $(\alpha , \beta)$ = ( - 6, 7)