Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let the harmonic mean and the geometric mean of two positive numbers be in the ratio $4: 5$. The two numbers are in the ratio

Sequences and Series

Solution:

Harmonic mean of $a, b$ is $H=\frac{2 a b}{a+b}$
Geometric mean $G=\sqrt{a b}$
Given: $\frac{H}{G}=\frac{4}{5}$,
so $\frac{2 \sqrt{a b}}{a+b}=\frac{4}{5}$
or, $\frac{a+b}{2 \sqrt{a b}}=\frac{5}{4}$
By componendo and dividendo
$\frac{(\sqrt{a}+\sqrt{b})^{2}}{(\sqrt{a}-\sqrt{b})^{2}}=\frac{9}{1}$
or $\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}=\frac{3}{1}$
Again, by componendo and dividendo $\frac{2 \sqrt{a}}{2 \sqrt{b}}=\frac{3+1}{3-1}$
$\frac{\sqrt{a}}{\sqrt{b}}=2$
or $\frac{a}{b}=\frac{4}{1}$