Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let the function $f(x)=\frac{{arc\,\cot} \frac{x}{2}+{arc \,\cot} \frac{x}{3}}{arc\,\tan \frac{x}{2}+arc\,\tan \frac{x}{3}}$, then $f(1)$ is equal to

Inverse Trigonometric Functions

Solution:

We have, $f(1)=\frac{\cot ^{-1} \frac{1}{2}+\cot ^{-1} \frac{1}{3}}{\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{3}}$
$=\frac{\tan ^{-1} 2+\tan ^{-1} 3}{\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{3}}$
$=\frac{\frac{3 \pi}{\frac{4}{4}}}{4}=3$