Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let the function $f(x)=2 x^3+(2 p-7) x^2+3(2 p-9) x-6$ have a maxima for some value of $x<0$ and a minima for some value of $x>0$. Then, the set of all values of $p$ is

JEE MainJEE Main 2023Application of Derivatives

Solution:

$ f(x)=2 x^3+(2 p-7) x^2+3(2 p-9) x-6 $
$ f^{\prime}(x)=6 x^2+2(2 p-7) x+3(2 p-9) $
$ f^{\prime}(0)<0$
$ \therefore 3(2 p -9)<0 $
$ p <\frac{9}{2}$
$p \in\left(-\infty, \frac{9}{2}\right) $