Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let the energy of an $ n^{th} $ orbit of $ H $ atom be $ -21.76 \times 10^{19}/n^2\, J $ . What will be the longest wavelength of energy required to remove an electron from the third orbit?

J & K CETJ & K CET 2017Structure of Atom

Solution:

$E_{n}=\frac{-21.76\times10^{-19}}{n^{2}} J $
For $n = 3$
$E_{n}=\frac{-21.76\times10^{-19}}{\left(3\right)^{2}}$
$=-2.42\times10^{-19} J$
$E=\frac{hc}{\lambda}$
$\Rightarrow \lambda=\frac{hc}{E}$
$=\frac{6.6\times10^{-34}\times3\times10^{8}}{2.42\times10^{-19}}$
$=8.2\times10^{-7}\,m$
$=0.82\times10^{-6}\,m$
$=0.82\, \mu m$