Q. Let the complex number $z$ satisfies the inequalities $\log _{\frac{1}{2}}|z-3|+\log _2|z-3 i|>0$, $|\operatorname{amp}(z+1-i)| \leq \frac{\pi}{4}$ and $|z| \leq 5$. If area of common region in which complex number $z$ lies is $\sqrt{\frac{a}{b}} \pi$ where $a, b$ are relatively prime numbers then find the value of $(a+b)$.
Complex Numbers and Quadratic Equations
Solution: