Q.
Let $\tan \alpha, \tan \beta$ and $\tan\gamma; \alpha, \beta, \gamma \neq \frac{(2 n -1) \pi}{2}$, $n \in N$ be the slopes of three line segments $OA$, $OB$ and $OC$, respectively, where $O$ is origin.If circumcentre of $\Delta ABC$ coincides with origin
and its orthocentre lies on y-axis, then the value
of $\left(\frac{\cos 3 \alpha+\cos 3 \beta+\cos 3 \gamma}{\cos \alpha \cos \beta \cos \gamma}\right)^{2}$ is equal to :
Solution: